Sparkle

Visualize the Things Scala Days SF 2015

@mighdoll lee@nestlabs.com

About Me

Nest, Google, Typesafe. (opinions are my own)

Apple, General Magic, Twitter, WebTV,
Microsoft, a few other startups

Scala fan

1. Intro to sparkle
2. Performance & scaling with streams
3. Live layer and data architecture

Bonus: demos, development tips, Q&A

Tool for easily making zooming graphs

Platform for custom visualizations on live data

e Built on streams
e Big data, low latency

https://github.com/mighdoll/sparkle

https://github.com/mighdoll/sparkle
https://github.com/mighdoll/sparkle

-
-

Loaders

Loading Data

e Several inputs, easy to add more
:: > o Files and directories (.csv / .tsv)

o Kafka / Avro
@ o HDFS bulk (*)
o netcat (*)
Loaders e | oaders support subscribe/notify

Fast Storage

Sparkle data model

Column oriented store
Immutable data model

N~

e (Cassandra

Fast Storage e RamsStore

'\

APl Transform

Select and Transform

Select columns

A Apply standard transforms

e Aggregation
Select & ® [Ime Aggregation

Transform
Extend with custom transforms
Fast

https://docs.google.com/document/d/1rz_7otdjla5d9990zdvM6Uev-5c_jqbZhepyLIKQO6U/pub

-

Stream

Sparkle Protocol

Generic visualization protocol
Designed for (Web)Sockets
ATTP access too (no streaming)
json encoded

Documented

-

Stream

https://docs.google.com/document/d/1OvRxFbTzjuLSh7J3NXEM3jNQKxCCiBEfKr5fE6EeBJk/pub#h.crvjj57twdr6
https://docs.google.com/document/d/1OvRxFbTzjuLSh7J3NXEM3jNQKxCCiBEfKr5fE6EeBJk/pub#h.crvjj57twdr6

Display

Javascript Client

built on d3
start with declarative javascript
easy to customize / extend

uses server api
Display o (or standalone)

Simple Demo

quick graph of .tsv plot from command line

Simple Demo

283 90th Percentile Request Time

2443

B ec0

2.2+
2.0+
1.8 4
1.6 4
144
1.2 4

1.0+

0.8+

0.6+

0.4+

| : t

-1 I I ! ! ! !
05:50 05:55 06 AM 06:05 06:10 06:15 06:20 06:25 06:30 06:35

05:49 20130109

Code for basic graph

var charts = [{
title: "90th Percentile Request Time",
groups: [{
label: "seconds",
axis: sideAxis (),

named: [{ name: "epochs/p90" }]

Performance

Asynchronous Streams of Arrays

Perf Study: Read API

Y
S —

—

N~

Fast Storage API

Phase |: Optimize Later

class Event[K, V](key: K, value: V)
def read(): Seq[Event[K, V]]

e Easiest to understand, use, implement

Tip: Perf Approach

1. Add measurements directly in the code
o repeat single flow: end to end, major components
o Async? measure synchronous portions and sum

2. Confirm/detail w/CPU profiling (YourKit)
3. Test throughput and latency under load
4. Review GC logs (Censum)

Graph to review perf numbers

-
O
i

©
N
u_lu

-
-
ol
@
O
O

DataArray - Saves Heap

/,,Ivvvvvvvvvvvvvvvvvvvvvv |

DataArray

\ﬂkkkkkkkkkkkkkkkkkkkkkkl

e Arrays of primitives
e High density jvm storage
e Cache locality

Phase Il: Array Blocks

class DataArray[K: TypeTag, V: TypeTag]

(keys: Array[K], values: Array[V])

def read(): DataArray[K, V]

Are we done yet?

Dense arrays mean less garbage
Tighter loops, more CPU cache efficient

Latency

Fetch Crunch Serve
> - -

Start End

Overlap Pipeline Stages?

Fetch

Start End

Consider Throughput

Fetch Crunch Serve
> - -
Fetch Crunch Serve
> - -
Fetch Crunch Serve
> - -
Fetch Crunch Serve
> - -
Fetch Crunch Serve

Throughput: Memory

Fetch Crunch Serve

> > >

kKkkkkkkkkkkkkkkkkkkkkk
VVVVVVVVVVVVVVVVVVVVVV

Generational Hypothesis

A
Collectable
Garbage

New Gen Age of Object

Throughput: Memory

Fetch Crunch Serve

> —> >

kKkkkkkkkkkkkkkkkkkkkkk
VVVVVVVVVVVVVVVVVVVVVV

New Gen
Collection

Throughput: Memory

Fetch Crunch Serve

> —> >

kKkkkkkkkkkkkkkkkkkkkkk
VVVVVVVVVVVVVVVVVVVVVV

kKkkkkkkkkkkkkkkkkkkkkk
VVVVVVVVVVVVVVVVVVVVVV

kKkkkkkkkkkkkkkkkkkkkkk
VVVVVVVVVVVVVVVVVVVVVV

kKkkkkkkkkkkkkkkkkkkkkk
VVVVVVVVVVVVVVVVVVVVVV

kKkkkkkkkkkkkkkkkkkkkkk
VVVVVVVVVVVVVVVVVVVVVV

New Gen
Collection

Survivor

New Old

Survivor

Throughput: Memory

Fetch Crunch Serve

> —> >

KKkKKKKKKKKKKKKKKKKKKKK
vvvvvvﬁvvvvvvvvv%vvvvv

KKKkKkKKKKKKKKKKKKKKKKKK
VVVVVVVVVVVVVVVVVVVVVV

kKkkkkkkkkkkkkkkkkkkkkk kkkkkkkkkkkkkkkkkkkkkk
VVVVVVVYVVVVVVVVVVNVVVVV VVVVVVVYVVVVVVVVVVVVVVV
KkkKKkkKKkkKKKkKKKKKKKKKK kKkkkkkkkkkkkkkkkkkkkkk

VVVVVNVVVVVVVVVNVVVVVYV

KKKKRKKKKKKKKKRKKKKKKK
VVVVVMVVVVVVVVV\VVVVVVVYV

VVVVVNVVVVVVVVVVVVVVVV

KkKRKkKkKkKKkKkKKKKkKKKKKKKK

VVVYVVVVVVVVVVVVVVVVVYV

New Gen
Collection

kkkkﬁkkkkkkkkkkkkkkkkk
VVVVYVVVVVVVVVVVVVVVVV

kKkkkkkkkkkkkkkkkkkkkkk

VVVVYVVVVVVVVVVVVVVVVVYV

1
Live Set

a4

N
>
(4v)
. -
. -
<

Live Set

New Gen
Collection

‘ >
dxlsllxl>- - - =
< f>| x>
x| >
N
A
k o
c
© K
(0))]
) ™
) 4 Tz
r =1 12| l<l>
> 1l > X 1
C
s k_vkvkvmw
'S IS s RN ™
. k_vkv >
> 1l > X 1
ME : ~l >
. k_vkvkv
> 1l > X 1
k_vkkaMW
ME : ~l >
— <l>] [=<j >
N > _
-kv.kv-|||kv
wd <> el=] [<]>] [2
- > : > [
M S — 171 <] > =
)
[~l>] <>
I L > <l >
O =

VVVI|IVVVIIVVV]IVVV]IVVYV

kkk][Kkk][KkKk][kkk][kKK

Phase lll: Async Blocks

class DataStream[K: TypeTag, V: TypeTag]
(data: Observable[DataArray[K, V]])

def read(): DataStream[K, V]

Go Reactive: save GC

Be more responsive, timely
e Reason enough to go reactive.

Another reason: reduce GC pressure.
e Transient working set is key for throughput

More Blocks

and more Streams

Blocks for Streaming Layer

Kafka is already block streaming internally

Encode your data block-wise anyway

e Encode/decode is more efficient
e Sets the stage for downstream consumers

Blocks for Cassandra

Partition-aligned CQL write batches
e 10x write throughput

Store 1K blocks instead of (62) elements

e 10x write throughput
e 4x read throughput

Stream to Graphing Client

Overlap client processing / communication

e Lowers end to end latency
e Display starts sooner
e Enables live / progressive updates

Client

St

Request

st

StreamControl

T Request

Streams

Update

Update

Status

i

Update

Update

Update

Update

Update

Server

Async Streams of Arrays

N—
Coooo> | oo
04 DoOoD >

Loaders Fast Storage

Async Streams of Arrays

Architecture

Lambda Architecture?

Streams are great for Sparkle
'Lambda Architecture' is about using streams
WDYT?

Lambda Architecture?

Queries as pure functions that take all data
e +1.we're all FP fans here too.

Batch... is too slow
So combine w/streaming, fast but approximate

Lambda Architecture

Lambda solves for latency

Problem: store + computation is batch slow
Solution: two pipes. streaming, slow/batch

New Problem: two pipes, two platforms, etc.

Streaming or batch: only 2 choices?

Low Latency Available Now

Ingest can be live
write 1M items / second (RF=3)

Processing can be live
fetch + crunch 1M items < 250 msec

5-10x better looks feasible
not near |O bound

Introducing: Live Layer

/Live Layer

Fast Store <::> Fast compute

-

-High volumne

_ow latency ingest
_ow latency fetch
Transform quickly

Live with Notification

/Live Layer N _||gh VO|Umne
w
% :
m = | Festeompute _ow latency ingest
N Y _ow latency fetch

Transform quickly
Notification

(Sparkle has a Live Layer)

Live Layer \

LA

Loaders Fast Storage APl Transform

/

-

Stream

Display

Live + Lambda?

A
Batch]

\
[StreamingJ Live (
L

_

Live: Enables On Demand

Grain aligned - compute live, on request

e Low latency response
e Fresh data

e Trigger as data arrives

Storage Grain

Example: time series server1/.cpu.idle

With the grain: fast queries, scans

Writes against the grain: only 10x slower
Reads against the grain: cost grows linearly

Lambda Architecture

Live as Serving Layer

Live (vs. Stream Layer)

History fully available, not just a window
Efficient calculate views only if needed

Front End to streaming too (serving layer).

Rule of thumb: Per-entity stream can be live

Live + Stream Layer

API for Live Data: Unifies

class TwoPartStream|[K,V]
(initial: DataStream,
ongoing: DataStream)

def readWithOngoing()
: TwoPartStream[K,V]

Simplifying ETL

o (=) | sweam
(Lrowasta) \[Live] =

o) o)

Extract Transform Load
e Format conversion
e Grain alignment

Single Pipe + Batch

b1
(o |
W

Live (vs. Batch Layer)

Flexible parameters, not fixed at batch time
Agile w/o need to bulk reprocess
Fast responses broaden uses

Rule of thumb: Per-entity batch can now be live
+/- One pipe, still two storage+crunch systems

Single Pipe + Batch

b1
(oo
W

Where to Transform Data?

Streaming: ETL
Live: fast, with the grain
Batch: slow, against the grain

Streaming + Live: fast, against the grain

Single Pipe + Batch

b1
(oo
W

Data Pipeline of the Future

Scala Console Demo

quick graphs from the scala repl

Spark Demo

query against the grain
batch parallel with spark

Tool for easily making zooming graphs

Platform for custom visualizations on live data

e Built on streams
e (Generic visualization protocol
e Live data/ big data

https://github.com/mighdoll/sparkle

https://github.com/mighdoll/sparkle
https://github.com/mighdoll/sparkle

Sparkle

Visualize the Things Scala Days SF 2015

@mighdoll lee@nestlabs.com

Tip: Make tests as REPL

Make tests than can be run from the repl
Encourages simpler syntax
Creates a useful tool

Tip: Always make it better

Every commit makes the

Avoid Forbidden Island Syndrome

-> Impassible continents

Strive for perfection: clarity, flexibility, efficiency

Scala: Refactoring FTW

e |Language power: refactoring enabler
o composition, abstraction, concision, clarity

e Types: safety net
o 'works the first time it compiles' - oft heard, true, fun
o 'works after refactoring' - more important

e Testing: smaller tests, better coverage

o Bulk is drag
o Bestin class test libraries

Tip: Go Deep and Make

Not just a list of features
Or a deadline

A little learning is a dangerous thing;
Drink deep, or taste not the Pierian spring.

Strive to create a well-made thing.

http://en.wikipedia.org/wiki/Pierian_spring

Challenges

Type recovery

stored data has a fixed type
protocol requests reference data
but these types are unknown at compile time

Dynamic type recovery

serialize type tag
recover: match against known types
recover: match against needed type classes

tryNumeric[T: TypeTag]: Try[Numeric[T]]

Phase IV: DataStream

Specialization?
Stream Fusion?
n-arrays?

Lambda Architecture

iz

(oo)
N

Gatch layer \

@arving layer

@ster datas;
\ J

batch view |--________|
N | Tttt
v) /——’——
batch view |-
N =/

/speed layer

real-time view

real-time view

