About Me

Nest, Google, Typesafe. (opinions are my own)

Apple, General Magic, Twitter, WebTV, Microsoft, a few other startups

Scala fan
Today

1. Intro to sparkle
2. Performance & scaling with streams
3. Live layer and data architecture

Bonus: demos, development tips, Q&A
Sparkle

Tool for easily making zooming graphs
Platform for custom visualizations on live data
- Built on streams
- Big data, low latency

https://github.com/mighdoll/sparkle
Loading Data

- Several inputs, easy to add more
 - Files and directories (.csv / .tsv)
 - Kafka / Avro
 - HDFS bulk (*)
 - netcat (*)

- Loaders support subscribe/notify
Sparkle data model

Column oriented store
Immutable data model

- Cassandra
- RamStore

Fast Storage
Select and Transform

Select columns

Apply *standard transforms*

- Aggregation
- Time Aggregation

Extend with custom transforms

Fast
Sparkle Protocol

- Generic visualization protocol
- Designed for (Web)Sockets
- HTTP access too (no streaming)
- Json encoded
- Documented
Javascript Client

- built on d3
- start with declarative javascript
- easy to customize / extend
- uses server api
 - (or standalone)
Simple Demo

quick graph of .tsv plot from command line
Simple Demo
Code for basic graph

```javascript
var charts = [ {
    title: "90th Percentile Request Time",
    groups: [ {
        label: "seconds",
        axis: sideAxis(),
        named: [ { name: "epochs/p90" } ]
    } ]
} ];
```
Performance

Asynchronous Streams of Arrays
Perf Study: Read API

Loaders → Fast Storage → API → Transform → Stream → Display
Phase I: Optimize Later

class Event[K, V](key: K, value: V)
def read(): Seq[Event[K, V]]

- Easiest to understand, use, implement
Tip: Perf Approach

1. Add measurements directly in the code
 ○ repeat single flow: end to end, major components
 ○ Async? measure synchronous portions and sum
2. Confirm/detail w/CPU profiling (YourKit)
3. Test throughput and latency under load
4. Review GC logs (Censum)

Graph to review perf numbers
GC / CPU utilization
DataArray - Saves Heap

- Arrays of primitives
- High density JVM storage
- Cache locality
class DataArray[K: TypeTag, V: TypeTag]
 (keys: Array[K], values: Array[V])

def read(): DataArray[K, V]
Are we done yet?

Dense arrays mean less garbage
Tighter loops, more CPU cache efficient
Latency

Fetch -> Crunch -> Serve

Start <-> End
Overlap Pipeline Stages?

Fetch

Crunch

Serve

Start

End
Consider Throughput
Throughput: Memory

Fetch → Crunch → Serve

k k

v v v v v v v v v v v v v v v v v v v v
Generational Hypothesis

Collectable Garbage

New Gen Collection

Age of Object
Throughput: Memory

Fetch

Crunch

Serve

New Gen Collection
Throughput: Memory

Fetch

Crunch

Serve

New Gen Collection
JVM Heap

- New
- Survivor
- Old
- Survivor
Throughput: Memory
Solution: Break Big Arrays
Phase III: Async Blocks

class DataStream[K: TypeTag, V: TypeTag] (data: Observable[DataArray[K, V]])

def read(): DataStream[K, V]
Go Reactive: save GC

Be more responsive, timely

- Reason enough to go reactive.

Another reason: reduce GC pressure.

- Transient working set is key for throughput
More Blocks
and more Streams
Blocks for Streaming Layer

Kafka is already block streaming internally

Encode your data block-wise anyway

- Encode/decode is more efficient
- Sets the stage for downstream consumers
Blocks for Cassandra

Partition-aligned CQL write batches
- 10x write throughput

Store 1K blocks instead of (62) elements
- 10x write throughput
- 4x read throughput
Stream to Graphing Client

Overlap client processing / communication

- Lowers end to end latency
- Display starts sooner
- Enables live / progressive updates
Async Streams of Arrays

Loaders Fast Storage

API Transform Stream Display
Async Streams of Arrays
Architecture
Streams are great for Sparkle
'Lambda Architecture' is about using streams
WDYT?
Lambda Architecture?

Queries as pure functions that take all data
- +1. we're all FP fans here too.

Batch... is too slow
So combine w/streaming, fast but approximate
Lambda Architecture

ETL → Streaming
ETL → Batch
new data

Serving
Lambda solves for latency

Problem: store + computation is batch slow
Solution: two pipes. streaming, slow/batch

New Problem: two pipes, two platforms, etc.

Streaming or batch: only 2 choices?
Low Latency Available Now

Ingest can be live
 write 1M items / second (RF=3)
Processing can be live
 fetch + crunch 1M items < 250 msec
5-10x better looks feasible
 not near IO bound
Introducing: Live Layer

High volume
Low latency ingest
Low latency fetch
Transform quickly
Live with Notification

- High volume
- Low latency ingest
- Low latency fetch
- Transform quickly
- Notification

Live Layer

Fast Store ↔ Fast compute
(Sparkle has a Live Layer)
Live + Lambda?
Live: Enables On Demand

Grain aligned - compute live, on request

- Low latency response
- Fresh data
- Trigger as data arrives
Storage Grain

Example: time series server17.cpu.idle
With the grain: fast queries, scans
Writes against the grain: only 10x slower
Reads against the grain: cost grows linearly
Lambda Architecture

new data → ETL → Streaming

ETL → Batch

Serving
Live as Serving Layer

new data ➔ ETL ➔ Streaming ➔ Live

ETL ➔ ETL

ETL ➔ Batch

Live ➔...
Live (vs. Stream Layer)

History fully available, not just a window

Efficient calculate views only if needed

Front End to streaming too (serving layer).

Rule of thumb: Per-entity stream can be live
Live + Stream Layer

- ETL
- Stream
- Batch
- Live
API for Live Data: Unifies

class TwoPartStream[K,V]
 (initial: DataStream,
 ongoing: DataStream)

def readWithOngoing()
 : TwoPartStream[K,V]
Simplifying ETL

ETL → Stream
ETL → Batch

- Extract
- Transform
- Load
- Format conversion
- Grain alignment

Live
Single Pipe + Batch

new data → ETL → Stream → Live

Batch
Live (vs. Batch Layer)

Flexible parameters, not fixed at batch time
Agile w/o need to bulk reprocess
Fast responses broaden uses

Rule of thumb: Per-entity batch can now be live
+/- One pipe, still two storage+crunch systems
Single Pipe + Batch

new data → ETL → Stream → Live

Batch
Where to Transform Data?

Streaming: ETL
Live: fast, with the grain
Batch: slow, against the grain

Streaming + Live: fast, against the grain
Single Pipe + Batch

new data → ETL → Stream → Live → Batch
Data Pipeline of the Future
Scala Console Demo

quick graphs from the scala repl
Spark Demo

query against the grain
batch parallel with spark
Sparkle

Tool for easily making zooming graphs
Platform for custom visualizations on live data

- Built on streams
- Generic visualization protocol
- Live data / big data

https://github.com/mighdoll/sparkle
Sparkle

Visualize the Things Scala Days SF 2015

@mighdoll lee@nestlabs.com
Tip: Make tests as REPL

Make tests that can be run from the REPL
Encourages simpler syntax
Creates a useful tool
Tip: Always make it better

Every commit makes the
Avoid Forbidden Island Syndrome
-> impassible continents
Strive for perfection: clarity, flexibility, efficiency
Scala: Refactoring FTW

- **Language power:** refactoring enabler
 - composition, abstraction, concision, clarity

- **Types:** safety net
 - 'works the first time it compiles' - oft heard, true, fun
 - 'works after refactoring' - more important

- **Testing:** smaller tests, better coverage
 - Bulk is drag
 - Best in class test libraries
Tip: Go Deep and Make

Not just a list of features
Or a deadline

A little learning is a dangerous thing;
Drink deep, or taste not the Pierian spring.

Strive to create a well-made thing.
Challenges
Type recovery

stored data has a fixed type
protocol requests reference data
but these types are unknown at compile time
Dynamic type recovery

serialize type tag
recover: match against known types
recover: match against needed type classes

tryNumeric[T: TypeTag]: Try[Numeric[T]]
Phase IV: DataStream

Specialization?
Stream Fusion?
n-arrays?
Scratch
Lambda Architecture

batch layer
master dataset

serving layer
batch view
batch view

speed layer
real-time view
real-time view

new data
query
query