Sparkle

Visualize the Things Scala Days SF 2015

@mighdoll lee@nestlabs.com

About Me

Nest, Google, Typesafe. (opinions are my own)

Apple, General Magic, Twitter, WebTV, Microsoft, a few other startups

Scala fan

Today

- 1. Intro to sparkle
- 2. Performance & scaling with streams
- 3. Live layer and data architecture

Bonus: demos, development tips, Q&A

Sparkle

Tool for easily making zooming graphs
Platform for custom visualizations on live data

- Built on streams
- Big data, low latency

https://github.com/mighdoll/sparkle

Loading Data

Loaders

- Several inputs, easy to add more
 - Files and directories (.csv / .tsv)
 - Kafka / Avro
 - HDFS bulk (*)
 - netcat (*)
- Loaders support subscribe/notify

Sparkle data model

Column oriented store Immutable data model

Fast Storage

- Cassandra
- RamStore

Select and Transform

Select & Transform Select columns

Apply standard transforms

- Aggregation
- Time Aggregation

Extend with custom transforms

Fast

Sparkle Protocol

- Generic visualization protocol
- Designed for (Web)Sockets
- HTTP access too (no streaming)

Stream

- json encoded
- Documented

Javascript Client

Display

- built on d3
- start with declarative javascript
- easy to customize / extend
- uses server api
 - (or standalone)

Simple Demo

quick graph of .tsv plot from command line

Simple Demo

Code for basic graph

```
var charts = [ {
  title: "90th Percentile Request Time",
  groups: [ {
    label: "seconds",
    axis: sideAxis(),
    named: [ { name: "epochs/p90" } ]
} ];
```

Performance

Asynchronous Streams of Arrays

Perf Study: Read API

Phase I: Optimize Later

```
class Event[K, V](key: K, value: V)
def read(): Seq[Event[K, V]]
```

Easiest to understand, use, implement

Tip: Perf Approach

- 1. Add measurements directly in the code
 - repeat single flow: end to end, major components
 - Async? measure synchronous portions and sum
- 2. Confirm/detail w/CPU profiling (YourKit)
- 3. Test throughput and latency under load
- 4. Review GC logs (Censum)
 - Graph to review perf numbers

GC / CPU utilization

DataArray - Saves Heap

- Arrays of primitives
- High density jvm storage
- Cache locality

Phase II: Array Blocks

```
class DataArray[K: TypeTag, V: TypeTag]
    ( keys: Array[K], values: Array[V] )

def read(): DataArray[K, V]
```

Are we done yet?

Dense arrays mean less garbage Tighter loops, more CPU cache efficient

Latency

Overlap Pipeline Stages?

Consider Throughput

Throughput: Memory

Generational Hypothesis

Throughput: Memory

New Gen Collection

Throughput: Memory

New Gen Collection

JVM Heap

Throughput: Memory

Solution: Break Big Arrays

Phase III: Async Blocks

```
class DataStream[K: TypeTag, V: TypeTag]
    ( data: Observable[DataArray[K, V]] )
def read(): DataStream[K, V]
```

Go Reactive: save GC

Be more responsive, timely

Reason enough to go reactive.

Another reason: reduce GC pressure.

Transient working set is key for throughput

More Blocks

and more Streams

Blocks for Streaming Layer

Kafka is already block streaming internally

Encode your data block-wise anyway

- Encode/decode is more efficient
- Sets the stage for downstream consumers

Blocks for Cassandra

Partition-aligned CQL write batches

10x write throughput

Store 1K blocks instead of (62) elements

- 10x write throughput
- 4x read throughput

Stream to Graphing Client

Overlap client processing / communication

- Lowers end to end latency
- Display starts sooner
- Enables live / progressive updates

Async Streams of Arrays

Loaders Fast Storage

PI Transform

Stream

Display

Async Streams of Arrays

Architecture

Lambda Architecture?

Streams are great for Sparkle 'Lambda Architecture' is about using streams WDYT?

Lambda Architecture?

Queries as pure functions that take all data

+1. we're all FP fans here too.

Batch... is too slow

So combine w/streaming, fast but approximate

Lambda Architecture

Lambda solves for latency

Problem: store + computation is batch slow

Solution: two pipes. streaming, slow/batch

New Problem: two pipes, two platforms, etc.

Streaming or batch: only 2 choices?

Low Latency Available Now

```
Ingest can be live
  write 1M items / second (RF=3)
Processing can be live
  fetch + crunch 1M items < 250 msec
5-10x better looks feasible
  not near IO bound
```

Introducing: Live Layer

High volumne
Low latency ingest
Low latency fetch
Transform quickly

Live with Notification

High volumne
Low latency ingest
Low latency fetch
Transform quickly
Notification

(Sparkle has a Live Layer)

Live + Lambda?

Live: Enables On Demand

Grain aligned - compute live, on request

- Low latency response
- Fresh data
- Trigger as data arrives

Storage Grain

Example: time series server17.cpu.idle

With the grain: fast queries, scans

Writes against the grain: only 10x slower

Reads against the grain: cost grows linearly

Lambda Architecture

Live as Serving Layer

Live (vs. Stream Layer)

History fully available, not just a window **Efficient** calculate views only if needed

Front End to streaming too (serving layer).

Rule of thumb: Per-entity stream can be live

Live + Stream Layer

API for Live Data: Unifies

```
class TwoPartStream[K,V]
  ( initial: DataStream,
    ongoing: DataStream )
```

def readWithOngoing()

: TwoPartStream[K,V]

Simplifying ETL

Single Pipe + Batch

Live (vs. Batch Layer)

Flexible parameters, not fixed at batch time Agile w/o need to bulk reprocess
Fast responses broaden uses

Rule of thumb: Per-entity batch can now be live +/- One pipe, still two storage+crunch systems

Single Pipe + Batch

Where to Transform Data?

Streaming: ETL

Live: fast, with the grain

Batch: slow, against the grain

Streaming + Live: fast, against the grain

Single Pipe + Batch

Data Pipeline of the Future

Scala Console Demo

quick graphs from the scala repl

Spark Demo

query against the grain batch parallel with spark

Sparkle

- Tool for easily making zooming graphs

 Platform for custom visualizations on live data
- Built on streams
- Generic visualization protocol
- Live data / big data

https://github.com/mighdoll/sparkle

Sparkle

Visualize the Things Scala Days SF 2015

@mighdoll lee@nestlabs.com

Tips

Tip: Make tests as REPL

Make tests than can be run from the repl

Encourages simpler syntax

Creates a useful tool

Tip: Always make it better

Every commit makes the

Avoid Forbidden Island Syndrome

-> impassible continents

Strive for perfection: clarity, flexibility, efficiency

Scala: Refactoring FTW

- Language power: refactoring enabler
 - o composition, abstraction, concision, clarity
- Types: safety net
 - o 'works the first time it compiles' oft heard, true, fun
 - 'works after refactoring' more important
- Testing: smaller tests, better coverage
 - Bulk is drag
 - Best in class test libraries

Tip: Go Deep and Make

Not just a list of features
Or a deadline

A little learning is a dangerous thing; Drink deep, or taste not the Pierian spring.

Strive to create a well-made thing.

Challenges

Type recovery

stored data has a fixed type protocol requests reference data but these types are unknown at compile time

Dynamic type recovery

serialize type tag

recover: match against known types

recover: match against needed type classes

tryNumeric[T: TypeTag]: Try[Numeric[T]]

Phase IV: DataStream

Specialization?

Stream Fusion?

n-arrays?

Scratch

Lambda Architecture

